Telegram Group & Telegram Channel
πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Correcting Diffusion Generation through Resampling


πŸ”Έ Presenter: Ali Aghayari

πŸŒ€ Abstract:
This paper addresses distributional discrepancies in diffusion models, which cause missing objects in text-to-image generation and reduced image quality. Existing methods overlook this root issue, leading to suboptimal results. The authors propose a particle filtering framework that uses real images and a pre-trained object detector to measure and correct these discrepancies through resampling. Their approach improves object occurrence by 5% and FID by 1.0 on MS-COCO, outperforming previous methods in generating more accurate and higher-quality images.


πŸ“„ Papers: Correcting Diffusion Generation through Resampling


Session Details:
- πŸ“… Date: Tuesday
- πŸ•’ Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️



tg-me.com/RIMLLab/157
Create:
Last Update:

πŸ’  Compositional Learning Journal Club

Join us this week for an in-depth discussion on Compositional Learning in the context of cutting-edge text-to-image generative models. We will explore recent breakthroughs and challenges, focusing on how these models handle compositional tasks and where improvements can be made.

βœ… This Week's Presentation:

πŸ”Ή Title: Correcting Diffusion Generation through Resampling


πŸ”Έ Presenter: Ali Aghayari

πŸŒ€ Abstract:
This paper addresses distributional discrepancies in diffusion models, which cause missing objects in text-to-image generation and reduced image quality. Existing methods overlook this root issue, leading to suboptimal results. The authors propose a particle filtering framework that uses real images and a pre-trained object detector to measure and correct these discrepancies through resampling. Their approach improves object occurrence by 5% and FID by 1.0 on MS-COCO, outperforming previous methods in generating more accurate and higher-quality images.


πŸ“„ Papers: Correcting Diffusion Generation through Resampling


Session Details:
- πŸ“… Date: Tuesday
- πŸ•’ Time: 5:30 - 6:30 PM
- 🌐 Location: Online at vc.sharif.edu/ch/rohban

We look forward to your participation! ✌️

BY RIML Lab




Share with your friend now:
tg-me.com/RIMLLab/157

View MORE
Open in Telegram


RIML Lab Telegram | DID YOU KNOW?

Date: |

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless β€œ$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

At a time when the Indian stock market is peaking and has rallied immensely compared to global markets, there are companies that have not performed in the last 10 years. These are definitely a minor portion of the market considering there are hundreds of stocks that have turned multibagger since 2020. What went wrong with these stocks? Reasons vary from corporate governance, sectoral weakness, company specific and so on. But the more important question is, are these stocks worth buying?

RIML Lab from in


Telegram RIML Lab
FROM USA